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Abstract. We study the multi-channel Kondo model associated with an integrable higher-spin
analogue of the anti-ferroelectric six-vertex model, which is constructed by insertiné spBpin

llines:- - CeCleCleC?eCeCie (C?l: -. We formulate the problem in terms of
representation theory of quantum affine algebiydsi>) [1]. We derive an exact formula for the
spontaneous staggered polarization for our model, which corresponds to Baxter's formula [2] for
the six-vertex model.

1. Introduction

In 1973 Baxter [2] studied spontaneous staggered polarization of the six-vertex model. He
derived an exact formula for this quantity by the transfer matrix method:

(q% g%
(—q%; 9?2,
Here we have used the standard notation

@ Poo = [ |1 P"2).
n=0

1)

In 1976 Baxter [3] invented the corner transfer matrix method. The calculation of
the spontaneous staggered polarization was reduced to counting the multiplicities of the
eigenvalues of the corner transfer matrix. It was recognized that in many interesting cases
the eigenvalue of the corner transfer matrix can be described in terms of the characters
of affine Lie algebras. Kyoto—School [1, 4] gave mathematical explanations of the corner
transfer matrix method, and at the same time they invented the representation theoretical
approach to solvable lattice models. Kyoto—School's approach reproduces Baxter’s formula
(1) and makes it possible to calculate the quantities which cannot be calculated by the corner
transfer matrix method. Kyoto—School's methods have been applied to various problems [5-8].
Nakayashiki [9] introduced new-type vertex operators and gave the mathematical formulation
of the usual Kondo model.

In this paper we consider the multi-channel Kondo problem [10] associated with an
integrable higher-spin analogue of the anti-ferroelectric six-vertex model, which is constructed
by inserting spir% to spin 1 lines:

L CRCeCeCtleCieCieCe. ...
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This problem has quantum affine symmeltry(s@). Our main result is an exact formula for
spontaneous staggered polarization:

1 (qle;qls)oo{( ey T 0, 2 (4% 475 4(—6116;6116)30}

_ —2g _
1—4g* (9% 99 (—g% q%H2% (—q9% q%H2, (=% q%2,

Now, a few words about the organization of the paper. In section 2 we define the problem

and state the main result. In section 3 we derive an exact formula for spontaneous staggered
polarization.

2. Problem and result

The purpose of this section is to set the problem and summarize the main result.

2.1. Quantum affine algebi, (sl)

We follow the notation of [1]. We give definitions of quantum affine Lie algethe?l\g),
highest weight modules, and principal evaluation modules.
Consider a free Abelian group on the lettérg A, §:

P =7ZAo®ZA1 & ZS.

Define the simple rootsy, o1 and an elemens by
o
agtoyp =36 1\;|_=A0+?l p=Aog+ A1

Let(hg, hq, d) be abasisoP* = Hom(P, Z) dualto(Ag, A1, §). Define a symmetric bilinear
form by

(Ao, Ao) =0 (Ao, 1) =0 (Ao, 8) =1

(o1, 01) =2 (01,8) =0 (6,9 =0.
RegardingP* C P, via this bilinear form, we have the identification

ho=0£0 h1=Ol1 dZAo.

We use the symbol

n —n

q —4q
[n] = ——=.
q9—d9
The quantum affine algeb@(s/l\z) is an algebra with 1 ovet, defined on the generators
eo, e1, fo. f1andg” (h € P*) through the defining relations:

g"q" =" =1
q"eiq" =q“Me; " fig" =g P
fer f) =5, 1
e 1= 5
Mg =gt

ede; —[3le?eje; + [3leieje? —eje =0 i #J)

B =B fifi+BUififf = Fif2=0 G #).
Heret; = ¢". We writeU; (s/l\z) for the subalgebra d¥, (;l\z) generated by, e1, fo, f1.
g", g™, andU,(slp) by e1, f1, ¢"*. We define the coproduet by

A" =q"®4q" Ale)=e;®@1+5®e A(f)=fi®1+1® f.
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W/gdefine the irreducible highest weight module. Bets Z>oAo®Z>oA1. FOra € Py,
aU,(slz) moduleV (1) is called an irreducible highest weight module with highest weight
if the following conditions are satisfied: there exists a nonzero vdafoe V(A), called
the highest weight vector, such thgt|x) = ¢®*? 1) (h € P*), ein) = £ n) = 0
(i=021,andV(h) = Uq(EE)M). We say that/ (1) has level if 1t1|A) = ¢*|A). When
V(1) has levelk, the weighth = (k — m)Ag+mA; im = 0,..., k). Inthis paper we use
level 2 modulesV (2Ag), V(Ag + A1), V(2A1). e

We define the principal evaluation modul€s of the subalgebr#/, (sl2). Let V be a

module ofU, (sl). We equipV; with aU; (s/lz)—module structure by setting

eo(ve ® £™) = (frve) @ ¢t e1(ve ® ™) = (eqve) ® ¢t
fo(ve ® &™) = (erve) ® L™ filve ® ¢™) = (frve) ®@ ¢t
to=1y" 1(ve ® ¢™) = (t1ve) ® ¢™.

2.2. R-matrix and lattice model

In this section we define our two-dimensional lattice model, and summarize the main result.
1 —_~
Let V{(l) ~ C%®and V{(Z) ~ C2 be theU, (slp) principal modules. We fix real numbegsand
¢ as
-1<¢g<0 1< < (=)t
in the following. The Boltzmann weights of our model are specified by the &pith) R-
matrix intertwiner RV (¢) and the spin(3, 1) R-matrix intertwinerRz:(¢). The spin
(1, 1) R-matrix intertwinerR-2 (z1/62) : VP @ v — v ® v, is given by

a
az as
ag as ag
1 as az
Ry = A0 as az as . 2
k&9(8) as as
ae asg aa
as az
a
Here we set
2,2
@D (g) = 421_‘1—5
1— q2;-2
and

a=1  ap=Q1-¢Hg%dy  az=(1—q%¢/ds

as= (1= t9(q* = ¢3q%/dads  as= (1= ") (L~ q"q¢/drda

as = (1—¢*) (1 — g")¢?/dada

ar=az+tas  dp=1-¢%*  di=1-4"¢"
It is the Boltzmann weighys, that dominates at low temperature, i.e., wigda nearly equal
to zero. TherR-matrix RV (¢) satisfies unitarity and crossing symmetry:

REVORM @ ™H =1 R*D (=70 = RO EH350
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Figure 1. Boltzmann weightR @D (f). Figure 2. Boltzmann Weights'e(%‘l)(f).

1 1
Let us define the spifg, 1) R-matrix intertwinerR 2D (£1/¢,) V;f) ® Vg(zl) — V{(zl) ® V;f)
by

by
1 1 b b
RGD = 3 4 3
O=T50| b b 3)
b4 b2
b1
Here we set
3Dy = ¢ (4°¢% 400 @% % 4D
(@%72 4N (4302 g e
and
_ 2 _ 52 2
by =1 b2:(1 9¢)q p.— @ =89 b4:\/1+—q2(1 q)¢

1—¢3¢2 3T 1432 1—¢3%2"
It is the Boltzmann weighty4, that dominates at low temperature, i.e., wigea nearly equal
to zero. TheR-matrix R(%vl)(g) satisfies unitarity and crossing symmetry:

1 1 - 1 - nr 1 11—k,
REVORFV@ =1 REV(=g "0y = REV@ ).

A lattice vertex associated with the interaction of a spin 1 and spin 1 line has spin variables
i,i"=1(0,1,2)andj, j’ = (0, 1, 2), and spectral parameters ¢, € C. A Boltzmann weight
R<1~1>(§1/§2)§;fj, is attached to the configuration of these variables shown in figure 1. A lattice
vertex associated with the interaction of a s@iand spin 1 line has spin variable$’ = (0, 1)
andj, j' = (0, 1, 2), and spectral parameteys ¢, € C. ABoltzmann weighR(%*l)(gl/gz)ﬁifj/
is attached to the configuration of these variables shown in figure 2.

Now we consider the finite lattice in figure 3 under special boundary conditions.

Our model has & + 1 vertical lines with spectral parameteand 2V horizontal lines
with spectral parameter 1, wheré € N. The boundary conditions;, b;,c;,d; (j =
1,2,...,2N) are fixed in the following four cases, and their ground states are shown in
figure 4:

(1) (Ao + Ay, 2Ap)-case:

a; =1+(=pN*t b
(2) (Ao + Ay, 2A1)-case:

a; =1+(=DN* b, =1 cj=1 dj=1+(=p"*?

=1 cj=1 di=1+(=1"
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by a1
by == az
bs as
b4 - a4
b2N—3 aAoN 3
bon_o - AN -2
ban—1 AN —1
ban= aaN
2N IN
CoN -1 "donN -1
C2N -2 dan—2
Can-3Y Ydon -3
]
C4 = d4
cz ¥ ds
C; = ds
T
C1 dy

Figure 3. Lattice model.

(3) (2A0, Ao + Ap)-case:
aj=1 b; =1+(—pN* ¢ — 1+ (=DM d;
(4) (2A1, Ao + Ap)-case:
aj=1  bj=1+=D" ¢; =1+ g, =1
Let us set a configuratiofi to be an assignment of spins. Hence there afé 44N + 1

configurations for each boundary condition ). We introduce a probability measure in
the set of all configurations, assigning a statistical wely] " (C) to each configuratiod@

attached to the boundary condition, 11). The weightw "’ (C) is given as the product over
all vertices

Il
[

ij 1
wir© =TT R* @, [T R*P @
vertex vertex
Here we muliply theR-matrices under the boundary conditién ). The probability for the
configurationC to take place ISZ(l—”) w1 (C), where

N

Zyh =3 " wy(o).
c

This normalization factozx\’“) is called the partition function. The probability that the vertex
of the centre of our lattice takes valués given as follows:

(A,p)
ZC (st.e(C)=¢) WN ©)
Z](\;hﬂ)

PHM(N) = (4)
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Figure 4. Ground states.

Here the superscrih, 1) represents the boundary conditions. In this paper we are interested
in the probability functions in the infinite volume limit defined by

P = lim P (N). (5)
N—oo
We consider the infinite volume limit in the region given by
l<¢< ()
From symmetry arguments, we have the relations between the probability functions:
(e =0,1).
We show that the probability functions have the following formulae:

—-1<¢g<0

P6(A0+A1,2A0) — P1(1_\3+A1,2A1) — P€(2A1.A0+A1) — Pl(EzE\O,Aoml)

pilohL2n0) _ 1 @%d) 1 ¢@"%¢"% {}(_ 12+ 4q* )(—qg; "%
2(g*% g0 1—¢% (g% gM |2 1-4*) (4% q"%
+( IS ><—q16? 4% , <1+q2 2 >(—q4; qa)oo}
1-4*) (9% q%H% 1-q*) (—q* q%H%
(6)
and
Pl(A°+A1'2A°) _ 1— (CI4§ qz)oo _ 1 (qle; 9716)oc {1—(_ 1— qz + 442 > (_CZBQ 9716)50
2(g*% g0 1—9% (g% qM |2 1-4*) (4% q"%
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4 _ 16. ,16\2 204 _4.8oo
+<_q2_q4+ 444)( 92,614200_ q4( q4,q4)2} R
1-4¢*) (=¢%9¢M5% 1—-9q%(—q* 9%
The following is the main result of this paper, which is a direct consequence of relations (6)
and (7).

Main result 2.1. The spontaneous staggered polarization of our model has the following
infinite product formula:

pAotAn2h0) _ p(Ao*+A1.2h0) _ 1 (q16; 6116)00
0 — I I S
q9* (4% 9%
8 {(1+q4)(—q4;q8)oo B zqz(—qg;qm)io B 4(—q16;q16)§o}
(—q% 9% (—q% q"% (4% q"%

In fact, the spontaneous staggered polarization is independent of the spectral parameter

(8)

Remark. From relation (9) and the trace formula (10), we get
PéA0+A1,2A0) + Pl(Ao+A1,2Ao) =1

In what follows we explain how to derive this formula.

3. Derivation

The purpose of this section is to show the main result.

3.1. Infinite volume limit

We consider the infinite volume limN' — oo. For simplicity, we concentrate on the boundary
condition(Ag + A1, 2A0).

A path is defined as a sequence ofL02, denoted byp) = {p(j)};>1. For weights
A =2Ap, Ao+ A1, 2A1, consider the set of patif®,,, Pag+a,, Poa, DY

Par, = {Ip)|p(j) = 1+(=1)/, for j > 0}
Pag+a, = {IP)Ip(j) =1, for j > 0O}
Pon, = {Ip)Ip(j) = 1 +(=1)/*%, for j > 0}.

The infinite lattice, so defined, may be split into six pieces, consisting of four corners
and two half columns (see figure 5). The associated corner transfer matrices are labelled
A(2), B(¢),C(¢) andD(¢). Two lines are labelledyp (¢) and®; ow (7).

Following Baxter we define the corner transfer matrice8 (¢), 0@ (¢) in the infinite
volume limit N — oo, by the sum over the spin configurations in the interior,

oYenr = Y []raE
interior edges
where we take summations with the following boundary conditions related to the superscripts
b =1,2. Forb = 1, the pathgp), |p’) belong to the set of path®,+,,, and the north-west
boundary is fixed by = 1 (see figure 6). Fob = 2, the pathsp), |p’) belong to the set of
pathsP,,,, and the north-west boundary is fixed by= 2 (see figure 7). The corner transfer
matricesO @ (¢) and0®(¢) act on the path spaces, .+, and P,,,, respectively.
Definethe operator$: Pop,UPpgin,UP2n, = PangUPagen,UPon, DY p(j) — 2—p(j).
The corner transfer matrice$(¢), D(¢) act on the path spack,,. The corner transfer
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(I)LOW,e

Figure 5. Subdivision of the lattice into quadrants.

1 2

1~ 2~
1 : 2
1 - : 2 -

] L P (3) 9 2, P'@3)
- oK 2 s 7

..... p(3) p(2) p1) o p3) p(2) p(1)

p) |p)

@
©-

2

Figure 6. Corner transfer matrixo o

Figure 7. Corner transfer matrixo

matricesB(¢), C(¢) act on the path spacRk,,+x,. Using the crossing symmerty of thie
matrix, we can write

A@) = 0P (=g ™) - Slpy, B(Z) = 0P (O)|pyyn,
C)=5-0Y(=q ¢ Ylp,., D) =S-0P@) - Slp,,-
Baxter's argument [11] implies tha@® ;) = constz ™01, and 0@ (¢) =

conste Hemlrn where Hcru|p, does not depend on the spectral parameterKyoto—
School's conjecture is to identify the path spad®s,, Pa,+a, and Pp,, with the highest
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weight modules oqu(s/l\z), V(2Ag), V(Ag + A1) and V(2A;), which has been proved at
g = 0 by a crystal base argument. Under this identification the degree opéfaiar|p,

is realized acrm|p, = Dlvoy) = —p + (p, 1), Wherer = 2Ag, Ag + Ay and 2A;. The
semi-infinite chaind, p ((¢) is identified with the type-I vertex operatdrg‘[‘i;ﬁl(g) defined
by

o) = Y Do) ® e
e=0,1

where thel, (s2)- -intertwiner®32"1(¢) is defined by

OIAE) 1 V(2A0) —> V(Ao + Ap) @ VD).
The semi-infinite chair® .o w.(¢) is identified with the type-1 vertex operator

Prow.e(t) =8 5, | (¢)-S.

The type-| vertex operatabitiAl,e(g) is defined in the same manner

2 2
AI;‘?'Al(g) Z (DAI[:-?—Al,e(g) ® Ve
€=0,1

where thel, (st)—intertwinerQJi’giAl(;) is defined by

O, ()1 V(Ao Ay — V(2Ag) @ VP,

We assume, along the line of théXZ-chain [1], that the vertex operators satisfy the
homogeneity condition,

g0, (0 8P =0, L(¢/E).
From this condition we have

bz _ v (@’ POL 1 (gD ())

‘ Y01 veag @P®3N, | (—q L) @520 (0))
We adopt the normalizations

(Ao+ ALl@p0 R (O)1200) =1 (280|322, o(O)| Ao+ Ag) = 1.

The vertex operatocbi’;ﬂiAl .(—g~1¢) is identified with the dual-vertex operator
2A — 2A
DU p (a0 = QRN 4 (©).

The dual-vertex operat@bi‘zig‘lyé(g) is defined by

3 r (O)lv) = 5205 (©)(Iv) ® ve)

where thelU, (slz)—intertwinerGJZA’;in(g) is defined by

O (£): V(Ao+ A ® VP —> V(2A0).
We adopt the normalization
(A0 @525 (D)Mo +Ar) = 1.

Because the operatdr,_,; 3105 e(;)cszf‘\l(g) commutes withU, (sI) on the irreducible

0,€
moduleV (2Ap), it becomes a constag{Ao onV(2Ao). The constang,, 1 , can be determined
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by solving theg-KZ equation for variables, />, which is satisfied by the vacuum expectation
value(2A0|d>f\1;$g‘1,6(El)Cbé\XZﬁl({z)|2Ao) [12]:

8200 Y Phaln, (OPRL @) =d. ©
€=0,1
We get the following formula:
plhoras2ng _ TV2A0) (@ DN, (PN
; = .

- (10)
82/\10 trv2ae(¢%P)

Here we use
@*% 4% (% 4%, Y
(48 4% (g2 q*, ¢®)%

8an, = (1+47)
and

trv2a0 (@%2) = (=47 4P oo (—4* ¢ oo-
Here we use the notation

@1 P2 POo = || A= pipsE. . pita).

By the same arguments we have the following formulae for the boundary conditiohs =
(Ao + A1, 2A1), (2Ao, Ao+ Ag) OF (2A1, Ao+ Ay):

Uk — trv oy (@?P % ()P (£)) .

8 Htryy(g?P) ()
Here we use
GL = A+) (ql:; q:)oo(qllzo; q:» q:);o
(4% 4®)0 (g™ 9%, %)%
gl = (qj; Qj)oo(‘Iiz; q} q:);o
G% 4N (q7% 9% 4°)%
and

try2an (@) = (—4% 400 (4" q%oo

trvagran (@27) = (=47 %) (=47 4 oo
The vertex operators are defined in the same manner. From the cyclic property of the trace,
we obtain the following relations:

P@Ao.AotA1) _ p(AotAs.2A0) P@ALAgtAY) _ p(AotAL.2A0)
€ —€ € —€ .

From symmetries we easily know the following relations:

P@Ao.AotAr) _ p(2A1.AotAy) PphotA12h0) _ p(AotA12A1)
€ —€ € —€ .

From the commutation relation of vertex operators [12] and the cyclic property of the
trace, we can write down the-difference equation for parametey/z,, which the trace
trszq)(qu(Di/;i nL QP51 (22)) satisfies. However, we cannot solve thislifference
equation, now. In order to get the exact formulae of the probability functions, we use another

method—free field realizations.
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3.2. Free field realization

In order to calculate the trace of vertex operators

try@2ag (@22 @55 ()54 ())
we use the free field realization obtained by Hara [13]. For the readers’ convenience, we
summarize his result. The formulae in this paper are slightly different from Hara’s paper,
because his paper includes a few mistakes, which are serious for our needs. We use current-
type generators o/, (slz) introduced by Drinfeld. LetA be an algebra generated by
xtm e Z), an(m e Z;éo) y andK with relations

ﬂ'l

y : central
2m m
[ama an] - 8m+n Ouqu
[an, K]1=0
+p-1_ :I:2 +
Kx, K" = X,

:i:] - [2m] \m\ 4

[am, x] = [ ] 2 Xon
+ + +2 + + _ +2 4+ + + _+
Am+1Xn =4 Xy Xpe1 = 47 X Xpe1 — Xpe1ln

_ Lon— I
[xm’ n] = _1(3/2("1 ")Wmm -Y 2(m ”)§0m+n)

where
Y Yur =K exp[(q g7 Zamz‘"’}
m=0 m=1
i ¢n" =K1 eXD[ -(@-9H ia_mzm]
m=1

m=0

andy_,, = ¢, = 0 form > 0. Drinfeld showed that the algebrais isomorphic toU;(s/l\z).
The Chevalley generators are given by the identification
to=)/K71 =K €1=x5 fi=xy 60=x1_K71 f0=Kxi1.

We give explicit constructions of level 2 irreducible highest weight modules. Let ys pui?

since we want to construct level 2 modules. In what follows we use the parameterg for

our convenience. Commutation and anti-commutation relations of bosons and fermions are
given by

2m]?
[ams an] = 5m+n,0u

m
{¢ma ¢n} = 5m+n,077m

N = x2m +x72m

with m,n € Z + % or € Z for the Neuveu—-Schwartz or Ramond sector, respectively. Fock

spaces and vacuum vectors are denotedasF?"", F** and |vac), |NS), |R) for boson,
Neuveu—-Schwartz and Ramond fermion, respectively. Fermion currents are defined as

NS(Z) Z ¢NS —n ¢R(Z) — Z¢5Z7”'

neZ+ nez
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Let us set the degree of the monomial of fermiapy$7¢,5 ... ¢% asny +no +- - - +ny, and
PRON .. oK asny+ny+---+n,. Q = Zais the root lattice ok, and F[Q] is the group
algebra. We usé as

[0,a] =2
The irreducible highest weight modul&2A) is identified with the Fock space
FO = Fi g (F" ® FI20]) @ (F*" ® € F[20])}

whereFf’NS represents the subspace of fermion Fock space which is spanmesejegree
fermions, and”i’N5 byoddones. The highestweight vectoh®c ® |NS)®1. Theirreducible
highest weight modul& (2A,) is identified with the Fock space

FO=Fio(F" @ e Fl20) @ (F* ® FI20)).

The highest weight vector jsag ® | N S) @ €*. We define the actions of the Drinfeld generators
as

y=4° K=¢’
Q=) xpz "= EX()EX(2)¢NS (z)et 7242 12)
meZ
where
Ef = ex < :Fm m> E:>t — ex < :Fm —m).
() = exp ,,;J[Z ] () = exp ;)[2 ]

The irreducible highest weight modul&Ag + A1) is identified with the Fock space
FO = Fe @ F9" @ et F[O]

where
6 |R) = |R).

The highest weight vector isac ® |R) ® e2. For the actions of the Drinfeld generators, we
just replacep™ S (z) with ¢% (z) in (12). The free field realizations of vertex operators [13] are
constructed by

DIA(E) = (1D (E)
o2, () = —x5TC D).
Here we set
®1(0) = B1-(0)Br - (0)QR(0)efx’c? (13)

9

d o a
do(¢) = f Z—;"iB,,<(;)E:(w)B,,>(g)E;(w)szﬁés(w”(w)e‘fx%fw‘f
1 g( x;;éz; x4)oo { w n x5§2 }

Xx é‘ w w w
(_?; oo ¥z 1+= 552
(o]
B (¢) = exp(Z

2. o )

BI,><;>=exp< Z{Z]“" m")

n=

(14)

where
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Figure 8. Contor.

Note that the sign of the second term of (14) differs from the one in [13]. The integrand of

®(¢) has poles only ab = —x°¢2, —x3¢2 except forw = 0, oo and the contor of integration
enclosesy = 0, —x°¢2 as in figure 8.
For those 0@3\?3/\1,5(5) we just replaceR® ¢(£), ™5 (w) with QN5 (¢), ¢%(w) in (13),

(14). The fermion parf2(¢) are intertwiners between different fermion sectors and satisfy

L (=33 x4)oo _ﬁ; x4)oo

¢V W) (@) = xPw i —= o QR ()" (w)

(_Xlzz; x4)oo(_xu€ ;X% 0o

and exactly the same equation, except subscripts for fermion sectors, are exchanged. The
homogeneity condition of the fermion parts is given in [13]:

g QR @) 67 = QR s(c/8). (15)

The fermion parts® ¢ (¢), Q¥5(¢) are identified with type-I vertex operators of the two-
dimensional Ising modeb® ((¢), ®%*(¢) which were investigated in details [14]:

+) (@) = ol ( ; )
Eé‘ x?é‘

X

QNs(0) = Pys <—

For the readers’ convenience we summarize the definitions and properties of vertex operators
DR (2) and@%s(g), which are used later. The type-I vertex operators of the two-dimensional
Ising model are operators on Fock spaces

ok (¢): F" - F*"

dNS(¢y: F*" - FOV,
Define the subsectors as

D5 (6) = PYsDlors  PrLE) =P7@R°(@)  for o ==
whereP? denotes the projection onto subspaﬁgs. The intertwining relations are given by

PV (w)DRET () = FwePH ORI (0)pR (w)
PR W)DF ¢ (O = fFwH) PR _ (PN (w).

F@) =—/ Z”Txoc“; oo (=1 xH2sN()

Here we set
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wherez = exp(wriv/I) and sijv) is the Jacobi elliptic function with half periodsiI’. Because
of the intertwining relations, the following relations hold:

ZqDNs U(xé-)q)]]\elsyg(g) =gR X id}«va (16)
chS“(x;*)ﬂszo(c) = "% xid g 17
where the constants are
R (x*; x4 x8)2 NS (x8; x* x8)2
8 TN & T 6 1A, PO
We use the following intertwining relations in the next section:
DR>7(¢) = PP (@) (18)
oD, (0) = =N (Y () (19)

where we set
o =¢ o @0 /)
Wio=¢ o 8"
Here we set
[ @) = 2Vx (e x Do (—xf xH3enw) [ @) = @dn(v)

wherez = exp(riv/I) and crv), dn(v) are Jacobi elliptic functions with half periodsil’.

3.3. Integral formulae

In this section we calculate the trace of a product of two vertex operators and derive an integral
formula of the probability function. The free field realizations of the degree operators are
given by

Dlygy = —p = —2d* — 2d* + Zag - Ea“ - (A = 2Ao, 2A1, Ao+ A1).  (20)
Here we set
0 -
d“=>"mN; d* = kN}
m=0 k>0
where
«_ . m ¢ 1
N, = Wa—mam Ny = e Tgrg B Tar—T 1

We divide the trace o (2A0) ~ F.? into three parts;

tryang (22 ) = trpe ()t s @) gy (2
+rpa (x4 ) A s @y, tre plag)(x 2% % ).

The fermion parts can be written as

_ ¢NS _ ¢NS ) _ ¢NS
tr v (x M) = W s M) Rt s ()T ).
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Now we consider the trace of a product of two vertex operators
tryag PP (x TP (§))  for e=0,1
The trace taken over bosonic space is a direct consequence of the following formulae:

tr po (y_z‘?“ exp( i Anan) exp( i B,,a,,))
n=1

0 00 o [2n]2 o0 1
= eXp(Z Zlyz Aan n )11-1_))2#1
and
o\ i
<x6 (5) ;x4,x4> B~ (52) Br.<(¢1)

e 2 c 2
= [x* <_1) x4 x8 <_1> cx* x*) B (¢)Br-(&2). 1)
¢2 . & N

The traces taken over bosonic spdcecan be written as infinite products.
trpa(y 2" By, <(£2) B, <(£) EZ(w) B~ (£2) By » (1) EZ (w)

I T T A 40 £ G AT AT A 0 R G0 G G 1
(xOy2; x4, x4, y2)5, (3% ¥)oo

@2 (2% 2% 1%, ¥ (B2 ()% 1%, 1%, ¥

: (xOy2(2)% x4, x4, y2)2,
(—x9y22; x4 y2) (=051t ¥

x 724 4 12 1,2w. .4 2 x (G2 8| (22)
(—x"ys2,; ,y)oo(—X‘ygzz;x,y)oo

The traces taken over lattice space have the following theta function formulae:

trpiag) (2% flo) =3x8 4 = @ uo(—xt ) (23)
leZ
tre"F[ZQ] (x%af—aa fan) — ZXSIZ+4l‘f4l+2 — .f2®x18(_x12f4)~ (24)
leZ

Here we use the standard notation of the theta function, defined as
0,(2) = (i ool Poo(Pz™h Ploo-
Now we concentrate on the trace taken over the fermionic space:

tr o (4 Q0 (/025 (09N (w)

. i i
= trFiNs (x 4d¢d>gs’i <—x%§_> Cpﬁs,:': <_xg§_> ¢NS(w)) (25)

where the symbol®% ¢ | (¢) and®}*>*(¢) are type-| vertex operators of the two-dimensional
Ising model. From relations a7 and (19), we deform the vertex operators in (25) to the fermion
currents. Only the fermion currents and the degree operator appear in the trace:

i ; i
igg”s{ s (x“"‘” i“( - E)a“”(w))
1 v ((ix)—“‘?“” {VS< - —'3 )ngS(w))}. (26)
xz2¢
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Here we use
vt @) = f %fom(z)qs”(z/z% 133 @) = 23 (% o (=2 2HZ en(w).
To take the trace of (26) we invoke the following simple relation:

tr s (62 NS ()M (wp) _ g (B)

tr ovs (5—24%) _me%% 1+&2n \wy

We calculate the trace taken over fermionic space and calculate the integrals in (26), using the
Fourier expansion of coefficient functiofy's (z) given by

1 1
NS _ r
fo @) = % 1) oo (—x% x4)2 Z x2r +x—2rz ’

o0 I‘EZ+%
We have the following infinite sum formulae:

i 1 g6 1 w "
+_gNs tr —4d -
28 JE (4 1) 0 (—x4; X4)f;o{ Fons (X70) Z X2m + x—2m x5¢2

1
meZ+;

g 1 w \"

1
meZ+;

Using the following theta function’s identities:

1 442 @, 4
> = e txy/z 2 2.)C 3103 @A(ZF); 2
mezZ+3 * * (Fx%xN5 Ox(x%2)

we get the infinite product formula of the trace taken over fermionic space
tr o (-4 QRS (/02 (9N ()
_ 1. wz (x4 xH2 (18 x4, x8)2 1
2¢x2 (—xtx3, (8 xt e @, (_x%z)

)

8)(4 wz
e
(—xz; x4)oo—(x ):I:(xz;x4)oo ")

O4(—x2) (27)

X

Here we use the character formula of fermion Fock space;
tr pons (x_‘W) = (—xz; x4)oo.

Combining relations (21)-(24) and (27), we get an integral formula of the spontaneous
staggered polarizations. We can summarize the conclusion obtained as follows.
The trace of a product of two vertex operators has following integral formulae:

2
try@ag (2PN (D)@ (1)

1% 62 (0% x% ah o (% D2 (% x 3

T 232 (x8; x4, x 3, (—x% xHZ,
dw 1
X —— {1 +x%w + 5% 2)
%CW 2riw ¢ O (—172) O (— 352)

OnGz) 5 4 On(=32) 5 4
X“m““’w*w“’“w}
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Cl C‘.Z

Figure 9. Contors.

o (-(3))

_ T (—x2: x%) _®x4(_x_€2 (% 1)
Ou(—x2)" T T @ury T

x x3%2®xle< — %(%)2)] . (28)

Here the contours encircle = 0in such a way that
C1: —x°¢?is inside and— x°¢? is outside
Cy : —x3¢?is inside and— x¢? is outside
as in figure 9

3.4. Infinite product formula

The purpose of this section is to calculate the integral in (28) and derive an infinite product
formula of spontaneous staggered polarization as in the main result.
Let us use the following abbreviations:

(xlﬁ; le)

p1(x) = (x4.—x4)3oo(—x4§ oo

4 oo

("% x1%)o0 4, 42 8. .16y2

(x16; x16) 4. 42 16. 16,2
p3(x) = % 22 (e x4)oo(—x R I C S

16. .16

X" X

Pa) = — Jo (L2 2 (s

(% )% (x4 %) oo
Now we consider the following integral:
dw  ©u(5)0us(—x%(5)?)

—Ww .

2riw ®x4(_%)®x4(_x;‘22)

0,4(2)0,16(—x%2%)
0,4(=2)0,4(=2/x?)

The integrand functiod (z) = z (z = w/x¢?) is an elliptic function and has

odd invariance;
1(x82) = I1(2) 1(z) = —1(h.
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Therefore, taking the residue of Cauchy’s principal valugat—1, we have

dz 1
—1I1(z) = —-Res__11(2).
ﬁ:m iz (2) s Res—11(2)

Taking the residues near = —x¢2, we get the following formulae:

w 6/ w2
f dl:U w®x4(/?)]?x16(_x (fU_Z) ) 32 p2(x) — pa(x) C=C (29)
e 2w O,u(—1%)0u(— ) Pa(x) C = Co.
Using the same arguments as above, we get
f dw Ou(GE)On(—3(H)%) { —2%pa(n) +palx)  C=C (30)
c2tiw Ou(—%)0u(—35) | —2%pa(x) C =G,

We consider the following integral:
dw  Ous(—x%(%)?)
2riw " ©u(— i)

1 0 16(—2%)
7 ©,4(—x%)

(z = wx®/¢?)isan elliptic function and is composed

0,16(—7%)
©,16(z%)

The integrand functior (z) =

e} 2
andJy(z) = 1 2:25€) .

of a product of two odd invariant functiong(z) = L0

J(x%) = J(2) J(2) = J1(2)J2(2)
J(x8) = - (@) B(@) = —J(@Z™ for k=12

From the odd invariance property, the constant term of Fourier expansion for variabtg
thatz = €* becomes zero. Therefore, we have

y{ d_ZJl(Z)JZ(Z) =0.
|

zl=1 27TiZ

Taking the residue near = —x3/¢2, we get the following formulae:

dw  Ous(—=x%(%)?) (0 C=0C
% —Ww m =1 .3,2 _ (31)
c 2miw ®X4(—xg—{2) x°¢p1(x) C =C,.
Using the same arguments as above, we get the following formulae:
y{ dw Ous(—3()? | pa(x) C=0C 32
c2riw Ou(—gz) |0 C =C,.

We consider the following integral:

dw Ous(—x8(%)9)
2riw (i)

0,16(—2%)
0,4(—z/x%)°

K(z) = x8K(x81).

The integrand functiok (z) = (z = x3w/?) satisfies the quasi-periodicity

Therefore, we have

f de()_ -1 % +¢ de()
ls|=1 27z YT 1 s ——x2 J—_ye ) 27z ¢
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where we take the residues near Now we get the following formulae:

1
f dw Ous(—x%()?) | 75l C=0C
C

. : _ " (33)
2riw  Ou(—3p) Y p1(x) C =C.

1+x4
Using the same arguments as above we get the following formulae:

1
f dw 10m(-3(E? 1 —Wmm C=G o
i __w_ T 342
c2riww Oul X%Z) 4 a 7 P1(x) C=0C,
1+x

and
f dw 1 0:(%)0us(—35(5)?)
c 2miw w O (—172) O (— 32)

-1 { —2x*pa(x) — 4x2pa(x) + (x% + x2) pa(x) C=0C

T x22(1—x®) | 2" pa(x) — Ax2pa(x) + (2 + x8) pa(x) C=C
(35)
and
dw Ox(52)O8(—x()?)
7§c 21w O4(— %) 0,4(— )
N { 26 pa(x) + 4x°p3(x) — (1 +x*) pa(x) C=G (36)
1—x8 | 2x%pa(x) + 4x®pa(x) — (x* +x®) pa(x) C =0

Inserting relations (29)—(36) into integral formulae (28), we arrive at formulae (6) and (7). We
have now proved the main result.
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