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Abstract. We study the multi-channel Kondo model associated with an integrable higher-spin
analogue of the anti-ferroelectric six-vertex model, which is constructed by inserting spin1

2 to spin

1 lines: · · ·C3 ⊗ C3 ⊗ C3 ⊗ C2 ⊗ C3 ⊗ C3 ⊗ C3 · · · . We formulate the problem in terms of
representation theory of quantum affine algebraUq(ŝl2) [1]. We derive an exact formula for the
spontaneous staggered polarization for our model, which corresponds to Baxter’s formula [2] for
the six-vertex model.

1. Introduction

In 1973 Baxter [2] studied spontaneous staggered polarization of the six-vertex model. He
derived an exact formula for this quantity by the transfer matrix method:

(q2; q2)2∞
(−q2; q2)2∞

. (1)

Here we have used the standard notation

(z;p)∞ =
∞∏
n=0

(1− pnz).

In 1976 Baxter [3] invented the corner transfer matrix method. The calculation of
the spontaneous staggered polarization was reduced to counting the multiplicities of the
eigenvalues of the corner transfer matrix. It was recognized that in many interesting cases
the eigenvalue of the corner transfer matrix can be described in terms of the characters
of affine Lie algebras. Kyoto–School [1, 4] gave mathematical explanations of the corner
transfer matrix method, and at the same time they invented the representation theoretical
approach to solvable lattice models. Kyoto–School’s approach reproduces Baxter’s formula
(1) and makes it possible to calculate the quantities which cannot be calculated by the corner
transfer matrix method. Kyoto–School’s methods have been applied to various problems [5–8].
Nakayashiki [9] introduced new-type vertex operators and gave the mathematical formulation
of the usual Kondo model.

In this paper we consider the multi-channel Kondo problem [10] associated with an
integrable higher-spin analogue of the anti-ferroelectric six-vertex model, which is constructed
by inserting spin1

2 to spin 1 lines:

· · ·C3⊗ C3⊗ C3⊗ C2⊗ C3⊗ C3⊗ C3 · · · .
0305-4470/99/346149+20$30.00 © 1999 IOP Publishing Ltd 6149



6150 N Fukushima and T Kojima

This problem has quantum affine symmetryUq(ŝl2). Our main result is an exact formula for
spontaneous staggered polarization:

− 1

1− q4

(q16; q16)∞
(q4; q4)∞

{
(1 +q4)

(−q4; q8)∞
(−q4; q4)2∞

− 2q2 (−q8; q16)2∞
(−q2; q4)2∞

− 4q4 (−q16; q16)2∞
(−q2; q4)2∞

}
.

Now, a few words about the organization of the paper. In section 2 we define the problem
and state the main result. In section 3 we derive an exact formula for spontaneous staggered
polarization.

2. Problem and result

The purpose of this section is to set the problem and summarize the main result.

2.1. Quantum affine algebraUq(ŝl2)

We follow the notation of [1]. We give definitions of quantum affine Lie algebrasUq(ŝl2),

highest weight modules, and principal evaluation modules.
Consider a free Abelian group on the letters30,31, δ:

P = Z30⊕ Z31⊕ Zδ.
Define the simple rootsα0, α1 and an elementρ by

α0 + α1 = δ 31 = 30 +
α1

2
ρ = 30 +31.

Let(h0, h1, d)be a basis ofP ∗ = Hom(P,Z)dual to(30,31, δ). Define a symmetric bilinear
form by

(30,30) = 0 (30, α1) = 0 (30, δ) = 1

(α1, α1) = 2 (α1, δ) = 0 (δ, δ) = 0.

RegardingP ∗ ⊂ P , via this bilinear form, we have the identification

h0 = α0 h1 = α1 d = 30.

We use the symbol

[n] = qn − q−n
q − q−1

.

The quantum affine algebraUq(ŝl2) is an algebra with 1 overC, defined on the generators
e0, e1, f0, f1 andqh (h ∈ P ∗) through the defining relations:

qhqh
′ = qh+h′ q0 = 1

qheiq
−h = q(αi ,h)ei qhfiq

−h = q−(αi ,h)fi
[ei, fj ] = δij ti − t

−1
i

q − q−1

e3
i ej − [3]e2

i ej ei + [3]eiej e
2
i − ej e3

i = 0 (i 6= j)
f 3
i fj − [3]f 2

i fjfi + [3]fifjf
2
i − fjf 3

i = 0 (i 6= j).
Hereti = qhi . We writeU ′q(ŝl2) for the subalgebra ofUq(ŝl2) generated bye0, e1, f0, f1,

qh0, qh1, andUq(sl2) by e1, f1, q
h1. We define the coproduct1 by

1(qh) = qh ⊗ qh 1(ei) = ei ⊗ 1 + ti ⊗ ei 1(fi) = fi ⊗ t−1
i + 1⊗ fi.
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We define the irreducible highest weight module. SetP+ = Z>030⊕Z>031. Forλ ∈ P+,
aUq(ŝl2) moduleV (λ) is called an irreducible highest weight module with highest weightλ

if the following conditions are satisfied: there exists a nonzero vector|λ〉 ∈ V (λ), called
the highest weight vector, such thatqh|λ〉 = q(λ,h)|λ〉(h ∈ P ∗), ei |λ〉 = f

(λ,hi )+1
i |λ〉 = 0

(i = 0, 1), andV (λ) = Uq(ŝl2)|λ〉. We say thatV (λ) has levelk if t0t1|λ〉 = qk|λ〉. When
V (λ) has levelk, the weightλ = (k − m)30 + m31 (m = 0, . . . , k). In this paper we use
level 2 modules:V (230), V (30 +31), V (231).

We define the principal evaluation modulesVζ of the subalgebraU ′q(ŝl2). Let V be a

module ofUq(sl2). We equipVζ with aU ′q(ŝl2)-module structure by setting

e0(vε ⊗ ζm) = (f1vε)⊗ ζm+1 e1(vε ⊗ ζm) = (e1vε)⊗ ζm+1

f0(vε ⊗ ζm) = (e1vε)⊗ ζm−1 f1(vε ⊗ ζm) = (f1vε)⊗ ζm−1

t0 = t−1
1 t1(vε ⊗ ζm) = (t1vε)⊗ ζm.

2.2.R-matrix and lattice model

In this section we define our two-dimensional lattice model, and summarize the main result.

Let V (1)ζ ' C3 andV (
1
2)

ζ ' C2 be theUq(ŝl2) principal modules. We fix real numbersq and
ζ as

−1< q < 0 1< ζ < (−q)−1

in the following. The Boltzmann weights of our model are specified by the spin(1, 1) R-
matrix intertwinerR(1,1) (ζ ) and the spin( 1

2, 1) R-matrix intertwinerR(
1
2 ,1)(ζ ). The spin

(1, 1) R-matrix intertwinerR(1,1)(ζ1/ζ2) : V (1)ζ1
⊗ V (1)ζ2

→ V
(1)
ζ2
⊗ V (1)ζ1

is given by

R(1,1)(ζ ) = 1

κ(1,1)(ζ )



a1

a2 a3

a4 a5 a6

a3 a2

a5 a7 a5

a2 a3

a6 a5 a4

a3 a2

a1


. (2)

Here we set

κ(1,1)(ζ ) = ζ 2 1− q2ζ−2

1− q2ζ 2

and

a1 = 1 a2 = (1− ζ 2)q2/d4 a3 = (1− q4)ζ/d4

a4 = (1− ζ 2)(q2 − ζ 2)q2/d2d4 a5 = (1− ζ 2)(1− q4)qζ/d2d4

a6 = (1− q2)(1− q4)ζ 2/d2d4

a7 = a2 + a6 d2 = 1− q2ζ 2 d4 = 1− q4ζ 2.

It is the Boltzmann weight,a6, that dominates at low temperature, i.e., whenq is nearly equal
to zero. TheR-matrixR(1,1)(ζ ) satisfies unitarity and crossing symmetry:

R(1,1)(ζ )R(1,1)(ζ−1) = I R(1,1)(−q−1ζ )
k′,l′
k,l = R(1,1)(ζ−1)

2−k,l′
2−k′,l .
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Figure 1. Boltzmann weightsR(1,1)(f ). Figure 2. Boltzmann weightsR(
1
2 ,1)(f ).

Let us define the spin( 1
2, 1) R-matrix intertwinerR(

1
2 ,1)(ζ1/ζ2) : V

( 1
2 )

ζ1
⊗ V (1)ζ2

→ V
(1)
ζ2
⊗ V (

1
2 )

ζ1

by

R(
1
2 ,1)(ζ ) = 1

κ(
1
2 ,1)(ζ )


b1

b2 b4

b3 b4

b4 b3

b4 b2

b1

 . (3)

Here we set

κ(
1
2 ,1)(ζ ) = ζ (q

5ζ 2; q4)∞(q3ζ−2; q4)∞
(q5ζ−2; q4)∞(q3ζ 2; q4)∞

and

b1 = 1 b2 = (1− qζ 2)q

1− q3ζ 2
b3 = (q − ζ 2)q

1− q3ζ 2
b4 =

√
1 +q2

(1− q2)ζ

1− q3ζ 2
.

It is the Boltzmann weight,b4, that dominates at low temperature, i.e., whenq is nearly equal
to zero. TheR-matrixR(

1
2 ,1)(ζ ) satisfies unitarity and crossing symmetry:

R(
1
2 ,1)(ζ )R(

1
2 ,1)(ζ−1) = I R(

1
2 ,1)(−q−1ζ )

k′,l′
k,l = R(

1
2 ,1)(ζ−1)

1−k,l′
1−k′,l .

A lattice vertex associated with the interaction of a spin 1 and spin 1 line has spin variables
i, i ′ = (0, 1, 2) andj, j ′ = (0, 1, 2), and spectral parametersζ1, ζ2 ∈ C. A Boltzmann weight
R(1,1)(ζ1/ζ2)

i,j

i ′,j ′ is attached to the configuration of these variables shown in figure 1. A lattice

vertex associated with the interaction of a spin1
2 and spin 1 line has spin variablesi, i ′ = (0, 1)

andj, j ′ = (0, 1, 2), and spectral parametersζ1, ζ2 ∈ C. A Boltzmann weightR(
1
2 ,1)(ζ1/ζ2)

i,j

i ′,j ′

is attached to the configuration of these variables shown in figure 2.
Now we consider the finite lattice in figure 3 under special boundary conditions.
Our model has 2N + 1 vertical lines with spectral parameterζ and 2N horizontal lines

with spectral parameter 1, whereN ∈ N. The boundary conditionsaj , bj , cj , dj (j =
1, 2, . . . ,2N) are fixed in the following four cases, and their ground states are shown in
figure 4:

(1) (30 +31, 230)-case:

aj = 1 + (−1)N+j+1 bj = 1 cj = 1 dj = 1 + (−1)N

(2) (30 +31, 231)-case:

aj = 1 + (−1)N+j bj = 1 cj = 1 dj = 1 + (−1)N+1
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Figure 3. Lattice model.

(3) (230,30 +31)-case:

aj = 1 bj = 1 + (−1)N+1 cj = 1 + (−1)N+j dj = 1

(4) (231,30 +31)-case:

aj = 1 bj = 1 + (−1)N cj = 1 + (−1)N+j+1 dj = 1.

Let us set a configurationC to be an assignment of spins. Hence there are 4N2 + 4N + 1
configurations for each boundary condition(λ, µ). We introduce a probability measure in
the set of all configurations, assigning a statistical weightW

(λ,µ)

N (C) to each configurationC
attached to the boundary condition(λ, µ). The weightW(λ,µ)

N (C) is given as the product over
all vertices

W
(λ,µ)

N (C) =
∏
vertex

R(1,1)(ζ )
ij

i ′j ′
∏
vertex

R(
1
2 ,1)(ζ )klk′l′ .

Here we muliply theR-matrices under the boundary condition(λ, µ). The probability for the
configurationC to take place is 1

Z
(λ,µ)

N

W
(λ,µ)

N (C), where

Z
(λ,µ)

N =
∑
C

W
(λ,µ)

N (C).

This normalization factorZ(λ,µ)N is called the partition function. The probability that the vertex
of the centre of our lattice takes valueε is given as follows:

P (λ,µ)ε (N) =
∑

C (s.t.ε(C)=ε) W
(λ,µ)

N (C)

Z
(λ,µ)

N

. (4)
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Figure 4. Ground states.

Here the superscript(λ, µ) represents the boundary conditions. In this paper we are interested
in the probability functions in the infinite volume limit defined by

P (λ,µ)ε = lim
N→∞

P (λ,µ)ε (N). (5)

We consider the infinite volume limit in the region given by

−1< q < 0 1< ζ < (−q)−1.

From symmetry arguments, we have the relations between the probability functions:

P (30+31,230)
ε = P (30+31,231)

1−ε = P (231,30+31)
ε = P (230,30+31)

1−ε (ε = 0, 1).

We show that the probability functions have the following formulae:

P
(30+31,230)
0 = 1

2

(q4; q2)∞
(q4;−q2)∞

− 1

1− q2

(q16; q16)∞
(q4; q4)∞

{
1

2

(
− 1− q2 +

4q4

1− q4

)
(−q8; q16)2∞
(−q2; q4)2∞

+

(
− q2 − q4 +

4q6

1− q4

)
(−q16; q16)2∞
(−q2; q4)2∞

+

(
1 +q2 − 2q2

1− q4

)
(−q4; q8)∞
(−q4; q4)2∞

}
(6)

and

P
(30+31,230)
1 = 1

2

(q4; q2)∞
(q4;−q2)∞

− 1

1− q2

(q16; q16)∞
(q4; q4)∞

{
1

2

(
− 1− q2 +

4q2

1− q4

)
(−q8; q16)2∞
(−q2; q4)2∞
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+

(
− q2 − q4 +

4q4

1− q4

)
(−q16; q16)2∞
(−q2; q4)2∞

− 2q4

1− q4

(−q4; q8)∞
(−q4; q4)2∞

}
. (7)

The following is the main result of this paper, which is a direct consequence of relations (6)
and (7).

Main result 2.1. The spontaneous staggered polarization of our model has the following
infinite product formula:

P
(30+31,230)
0 − P (30+31,230)

1 = − 1

1− q4

(q16; q16)∞
(q4; q4)∞

×
{
(1 +q4)

(−q4; q8)∞
(−q4; q4)2∞

− 2q2 (−q8; q16)2∞
(−q2; q4)2∞

− 4q4 (−q16; q16)2∞
(−q2; q4)2∞

}
. (8)

In fact, the spontaneous staggered polarization is independent of the spectral parameterζ .

Remark. From relation (9) and the trace formula (10), we get

P
(30+31,230)
0 + P (30+31,230)

1 = 1.

In what follows we explain how to derive this formula.

3. Derivation

The purpose of this section is to show the main result.

3.1. Infinite volume limit

We consider the infinite volume limitN →∞. For simplicity, we concentrate on the boundary
condition(30 +31, 230).

A path is defined as a sequence of 0, 1, 2, denoted by|p〉 = {p(j)}j>1. For weights
λ = 230,30 +31, 231, consider the set of pathsP230, P30+31, P231 by

P230 = {|p〉|p(j) = 1 + (−1)j , for j � 0}
P30+31 = {|p〉|p(j) = 1, for j � 0}
P231 = {|p〉|p(j) = 1 + (−1)j+1, for j � 0}.

The infinite lattice, so defined, may be split into six pieces, consisting of four corners
and two half columns (see figure 5). The associated corner transfer matrices are labelled
A(ζ ), B(ζ ), C(ζ ) andD(ζ). Two lines are labelled8UP,ε(ζ ) and8LOW,ε(ζ ).

Following Baxter we define the corner transfer matricesO(1)(ζ ),O(2)(ζ ) in the infinite
volume limitN →∞, by the sum over the spin configurations in the interior,

(O(b)(ζ ))
|p′〉
|p〉 =

∑
interior edges

∏
R
ε′1ε
′
2

ε1ε2

where we take summations with the following boundary conditions related to the superscripts
b = 1, 2. Forb = 1, the paths|p〉, |p′〉 belong to the set of pathsP30+31, and the north-west
boundary is fixed byb = 1 (see figure 6). Forb = 2, the paths|p〉, |p′〉 belong to the set of
pathsP230, and the north-west boundary is fixed byb = 2 (see figure 7). The corner transfer
matricesO(1)(ζ ) andO(2)(ζ ) act on the path spacesP30+31 andP230, respectively.

Define the operatorsS : P230∪P30+31∪P231 → P230∪P30+31∪P231 byp(j)→ 2−p(j).
The corner transfer matricesA(ζ ),D(ζ ) act on the path spaceP230. The corner transfer
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Figure 5. Subdivision of the lattice into quadrants.

Figure 6. Corner transfer matrixO(1)
(ζ ) . Figure 7. Corner transfer matrixO(2)

(ζ ) .

matricesB(ζ ), C(ζ ) act on the path spaceP30+31. Using the crossing symmerty of theR-
matrix, we can write

A(ζ ) = O(2)(−q−1ζ−1) · S|P230
B(ζ ) = O(1)(ζ )|P30+31

C(ζ ) = S ·O(1)(−q−1ζ−1)|P30+31
D(ζ) = S ·O(2)(ζ ) · S|P230

.

Baxter’s argument [11] implies thatO(1)(ζ ) = const.ζ−HCTM |P30+31 , andO(2)(ζ ) =
const.ζ−HCTM |P230 , whereHCTM |Pλ does not depend on the spectral parameterζ . Kyoto–
School’s conjecture is to identify the path spacesP230, P30+31 andP231 with the highest
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weight modules ofUq(ŝl2), V (230), V (30 + 31) andV (231), which has been proved at
q = 0 by a crystal base argument. Under this identification the degree operatorHCTM |Pλ
is realized asHCTM |Pλ = D|V (λ) = −ρ + (ρ, λ), whereλ = 230,30 + 31 and 231. The
semi-infinite chain8UP,ε(ζ ) is identified with the type-I vertex operator830+31

230,ε
(ζ ) defined

by

8
30+31
230

(ζ ) =
∑
ε=0,1

8
30+31
230,ε

(ζ )⊗ vε

where theUq(ŝl2)-intertwiner830+31
230

(ζ ) is defined by

8
30+31
230

(ζ ) : V (230) −→ V (30 +31)⊗ V (
1
2)

ζ .

The semi-infinite chain8LOW,ε(ζ ) is identified with the type-I vertex operator

8LOW,ε(ζ ) = S ·8230
30+31,1−ε(ζ ) · S.

The type-I vertex operator8230
30+31,ε

(ζ ) is defined in the same manner

8
230
30+31

(ζ ) =
∑
ε=0,1

8
230
30+31,ε

(ζ )⊗ vε

where theUq(ŝl2)-intertwiner8230
30+31

(ζ ) is defined by

8
230
30+31

(ζ ) : V (30 +31) −→ V (230)⊗ V (
1
2)

ζ .

We assume, along the line of theXXZ-chain [1], that the vertex operators satisfy the
homogeneity condition,

ξ−D ·8230
30+31,ε

(ζ ) · ξD = 8230
30+31,ε

(ζ/ξ).

From this condition we have

P (30+31,230)
ε = trV (230)(q

2D8
230
30+31,1−ε(−q−1ζ )8

30+31
230,ε

(ζ ))∑
ε=0,1 trV (230)(q

2D8
230
30+31,1−ε(−q−1ζ )8

30+31
230,ε

(ζ ))
.

We adopt the normalizations

〈30 +31|830+31
230,1

(ζ )|230〉 = 1 〈230|8230
30+31,0

(ζ )|30 +31〉 = 1.

The vertex operator8230
30+31,ε

(−q−1ζ ) is identified with the dual-vertex operator

8
230
30+31,ε

(−q−1ζ ) = 8230 ∗
30+31,1−ε(ζ ).

The dual-vertex operator8230 ∗
30+31,ε

(ζ ) is defined by

8
230 ∗
30+31,ε

(ζ )|v〉 = 8230 ∗
30+31

(ζ )(|v〉 ⊗ vε)
where theUq(ŝl2)-intertwiner8230 ∗

30+31
(ζ ) is defined by

8
230 ∗
30+31

(ζ ) : V (30 +31)⊗ V (
1
2 )

ζ −→ V (230).

We adopt the normalization

〈230|8230 ∗
30+31,1

(ζ )|30 +31〉 = 1.

Because the operator
∑

ε=0,18
230 ∗
30+31,ε

(ζ )8
30+31
230,ε

(ζ ) commutes withUq(ŝl2) on the irreducible

moduleV (230), it becomes a constantg−1
230

onV (230). The constantg−1
230

can be determined
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by solving theq-KZ equation for variablesζ1/ζ2, which is satisfied by the vacuum expectation
value〈230|8230 ∗

30+31,ε
(ζ1)8

30+31
230,ε

(ζ2)|230〉 [12]:

g230

∑
ε=0,1

8
230 ∗
30+31,ε

(ζ )8
30+31
230,ε

(ζ ) = id. (9)

We get the following formula:

P (30+31,230)
ε = trV (230)(q

2D8
230 ∗
30+31,ε

(ζ )8
30+31
230,ε

(ζ ))

g−1
230

trV (230)(q
2D)

. (10)

Here we use

g−1
230
= (1 +q2)

(q12; q8)∞(q10; q4, q4)∞
(q8; q8)∞(q12; q4, q8)2∞

and

trV (230)(q
2D) = (−q2; q2)∞(−q4; q4)∞.

Here we use the notation

(z;p1, p2, . . . , pk)∞ =
∞∏

m1,m2,...,mk=0

(1− pm1
1 p

m2
2 . . . p

mk
k z).

By the same arguments we have the following formulae for the boundary conditions(µ, λ) =
(30 +31, 231), (230,30 +31) or (231,30 +31):

P (µ,λ)ε = trV (λ)(q2D8λ ∗
µ,ε(ζ )8

µ
λ,ε(ζ ))

g−1
λ trV (λ)(q2D)

. (11)

Here we use

g−1
231
= (1 +q2)

(q12; q8)∞(q10; q4, q4)∞
(q8; q8)∞(q12; q4, q8)2∞

g−1
30+31

= (q6; q4)∞(q10; q4, q4)∞
(q4; q4)∞(q12; q4, q8)2∞

and

trV (231)(q
2D) = (−q2; q2)∞(−q4; q4)∞

trV (30+31)(q
2D) = (−q2; q2)∞(−q2; q4)∞.

The vertex operators are defined in the same manner. From the cyclic property of the trace,
we obtain the following relations:

P (230,30+31)
ε = P (30+31,230)−ε P (231,30+31)

ε = P (30+31,231)−ε .

From symmetries we easily know the following relations:

P (230,30+31)
ε = P (231,30+31)−ε P (30+31,230)

ε = P (30+31,231)−ε .

From the commutation relation of vertex operators [12] and the cyclic property of the
trace, we can write down theq-difference equation for parameterζ1/ζ2, which the trace
trV (230)(q

2D8
230 ∗
30+31,ε

(ζ1)8
30+31
230,ε

(ζ2)) satisfies. However, we cannot solve thisq-difference
equation, now. In order to get the exact formulae of the probability functions, we use another
method—free field realizations.
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3.2. Free field realization

In order to calculate the trace of vertex operators

trV (230)(q
2D8

230 ∗
30+31,ε

(ζ )8
30+31
230,ε

(ζ ))

we use the free field realization obtained by Hara [13]. For the readers’ convenience, we
summarize his result. The formulae in this paper are slightly different from Hara’s paper,
because his paper includes a few mistakes, which are serious for our needs. We use current-
type generators ofU ′q(ŝl2) introduced by Drinfeld. LetA be an algebra generated by
x±m(m ∈ Z), am(m ∈ Z 6=0), γ andK with relations

γ : central

[am, an] = δm+n,0
[2m]

m

γm − γ−m
q − q−1

[am,K] = 0

Kx±mK
−1 = q±2x±m

[am, x
±
n ] = ± [2m]

[m]
γ∓

|m|
2 x±m+n

x±m+1x
±
n − q±2x±n x

±
m+1 = q±2x±mx

±
n+1− x±n+1x

±
m

[x+
m, x

−
n ] = 1

q − q−1
(γ

1
2 (m−n)ψm+n − γ− 1

2 (m−n)ϕm+n)

where
∞∑
m=0

ψmz
−m = K exp

[
(q − q−1)

∞∑
m=1

amz
−m
]

∞∑
m=0

ϕ−mzm = K−1 exp

[
− (q − q−1)

∞∑
m=1

a−mzm
]

andψ−m = ϕm = 0 form > 0. Drinfeld showed that the algebraA is isomorphic toU ′q(ŝl2).
The Chevalley generators are given by the identification

t0 = γK−1 t1 = K e1 = x+
0 f1 = x−0 e0 = x−1 K−1 f0 = Kx+

−1.

We give explicit constructions of level 2 irreducible highest weight modules. Let us putγ = q2

since we want to construct level 2 modules. In what follows we use the parameterx = −q for
our convenience. Commutation and anti-commutation relations of bosons and fermions are
given by

[am, an] = δm+n,0
[2m]2

m
{φm, φn} = δm+n,0ηm

ηm = x2m + x−2m

with m, n ∈ Z + 1
2 or ∈ Z for the Neuveu–Schwartz or Ramond sector, respectively. Fock

spaces and vacuum vectors are denoted asFa, F φ
NS

, F φ
R

and |vac〉, |NS〉, |R〉 for boson,
Neuveu–Schwartz and Ramond fermion, respectively. Fermion currents are defined as

φNS(z) =
∑
n∈Z+ 1

2

φNSn z−n φR(z) =
∑
n∈Z

φRn z
−n.
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Let us set the degree of the monomial of fermions,φNSn1
φNSn2

. . . φNSns asn1 + n2 + · · · + ns , and
φRn1
φRn2

. . . φRnr asn1 + n2 + · · · + nr . Q = Zα is the root lattice ofsl2 andF [Q] is the group
algebra. We use∂ as

[∂, α] = 2.

The irreducible highest weight moduleV (230) is identified with the Fock space

F (0)+ = Fa ⊗ {(F φ
NS

+ ⊗ F [2Q])⊕ (F φNS− ⊗ eαF [2Q])}
whereFφ

NS

+ represents the subspace of fermion Fock space which is spanned byevendegree

fermions, andFφ
NS

− byoddones. The highest weight vector is|vac〉⊗|NS〉⊗1. The irreducible
highest weight moduleV (231) is identified with the Fock space

F
(0)
− = Fa ⊗ {(F φ

NS

+ ⊗ eαF [2Q])⊕ (F φNS− ⊗ F [2Q])}.
The highest weight vector is|vac〉⊗|NS〉⊗eα. We define the actions of the Drinfeld generators
as

γ = q2 K = q∂
x±(z) =

∑
m∈Z

x±mz
−m = E±<(z)E±>(z)φNS(z)e±αz

1
2± 1

2∂ (12)

where

E±<(z) = exp

(
±
∑
m>0

a−m
[2m]

q∓mzm
)

E±>(z) = exp

(
∓
∑
m>0

am

[2m]
q∓mz−m

)
.

The irreducible highest weight moduleV (30 +31) is identified with the Fock space

F (1) = Fa ⊗ FφR ⊗ e
α
2F [Q]

where

φR0 |R〉 = |R〉.
The highest weight vector is|vac〉 ⊗ |R〉 ⊗ e

α
2 . For the actions of the Drinfeld generators, we

just replaceφNS(z) with φR(z) in (12). The free field realizations of vertex operators [13] are
constructed by

8
30+31
230,ε

(ζ ) = ζ 1−ε8ε(ζ )

8
230
30+31,ε

(ζ ) = −xζ 1
2−ε8ε(ζ ).

Here we set

81(ζ ) = BI,<(ζ )BI,>(ζ )�RNS(ζ )e
α
2 x∂ζ

∂
2 (13)

80(ζ ) =
∮

dw

2π i
BI,<(ζ )E

−
<(w)BI,>(ζ )E

−
>(w)�

R
NS(ζ )φ

NS(w)e−
α
2 x∂ζ

∂
2w−

∂
2

×x−2ζ−1w−
3
2

(− w
x3ζ 2 ; x4)∞

(− w
xζ 2 ; x4)∞

{
w

1 + w
x3ζ 2

+
x5ζ 2

1 + x5ζ 2

w

}
(14)

where

BI,<(ζ ) = exp

( ∞∑
n=1

[n]a−n
[2n]2

(−x5ζ 2)n
)

BI,>(ζ ) = exp

(
−
∞∑
n=1

[n]an
[2n]2

(−x3ζ 2)−n
)
.
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Figure 8. Contor.

Note that the sign of the second term of (14) differs from the one in [13]. The integrand of
80(ζ ) has poles only atw = −x5ζ 2,−x3ζ 2 except forw = 0,∞ and the contor of integration
enclosesw = 0,−x5ζ 2 as in figure 8.

For those of8230
30+31,ε

(ζ ) we just replace�RNS(ζ ), φ
NS(w) with �NSR (ζ ), φR(w) in (13),

(14). The fermion part�(ζ) are intertwiners between different fermion sectors and satisfy

φNS(w)�NSR (ζ ) = x2ζw−
1
2

(− w
x3ζ 2 ; x4)∞(− x7ζ 2

w
; x4)∞

(− w
xζ 2 ; x4)∞(− x5ζ 2

w
; x4)∞

�NSR (ζ )φR(w)

and exactly the same equation, except subscripts for fermion sectors, are exchanged. The
homogeneity condition of the fermion parts is given in [13]:

ξd
R ·�RNS(ζ ) · ξ−d

NS = �RNS(ζ/ξ). (15)

The fermion parts�RNS(ζ ),�
NS
R (ζ ) are identified with type-I vertex operators of the two-

dimensional Ising model8R
NS(ζ ),8

NS
R (ζ ) which were investigated in details [14]:

�RNS(ζ ) = 8R
NS

(
− i

x
3
2 ζ

)
�NSR (ζ ) = 8NS

R

(
− i

x
3
2 ζ

)
.

For the readers’ convenience we summarize the definitions and properties of vertex operators
8R
NS(ζ ) and8NS

R (ζ ), which are used later. The type-I vertex operators of the two-dimensional
Ising model are operators on Fock spaces

8R
NS(ζ ) : Fφ

NS → Fφ
R

8NS
R (ζ ) : Fφ

R → Fφ
NS

.

Define the subsectors as

8R
NS,σ (ζ ) = 8R

NS(ζ )|V φNSσ
8NS
R,σ (ζ ) = Pσ8NS

R (ζ ) for σ = ±

whereP σ denotes the projection onto subspaceFφ
NS

σ . The intertwining relations are given by

φNS(w)8
NS,σ
R (ζ ) = f (wζ 2)8

NS,−σ
R (ζ )φR(w)

φR(w)8R
NS,σ (ζ ) = f (wζ 2)8R

NS,−σ (ζ )φ
NS(w).

Here we set

f (z) = −
√

2πx

I
(x4; x4)∞(−x4; x4)2∞sn(v)
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wherez = exp(π iv/I)and sn(v) is the Jacobi elliptic function with half periodsI, iI ′. Because
of the intertwining relations, the following relations hold:∑

σ

8R
NS,σ (xζ )8

NS,σ
R (ζ ) = gR × id

Fφ
R (16)

8
NS,σ
R (xζ )8R

NS,σ (ζ ) = gNS × idFφNSσ
(17)

where the constants are

gR = (x4; x4, x8)2∞
(x2; x4, x4)∞

gNS = (x8; x4, x8)2∞
(x6; x4, x4)∞

.

We use the following intertwining relations in the next section:

σ8
NS,σ
R (ζ ) = 8NS,σ

R (ζ )ψR
1 (ζ ) (18)

σ8R
NS,σ (ζ ) = −i8R

NS,−σ (ζ )ψ
NS
1 (ζ ) (19)

where we set

ψR
1 (ζ ) =

∮
dz

2π iz
f R0 (z)φ

R(z/ζ 2)

ψNS
1 (ζ ) =

∮
dz

2π iz
f NS0 (z)φNS(z/ζ 2).

Here we set

f NS0 (z) = 2
√
x(x4; x4)∞(−x4; x4)2∞cn(v) f R0 (z) =

√
2I

π
dn(v)

wherez = exp(π iv/I) and cn(v), dn(v) are Jacobi elliptic functions with half periodsI, iI ′.

3.3. Integral formulae

In this section we calculate the trace of a product of two vertex operators and derive an integral
formula of the probability function. The free field realizations of the degree operators are
given by

D|V (λ) = −ρ = −2d̄a − 2d̄φ +
1

4
∂2
α −

1

2
∂α − (λ, λ)

2
(λ = 230, 231,30 +31). (20)

Here we set

d̄a =
∞∑
m=0

mNa
m d̄φ =

∑
k>0

kN
φ

k

where

Na
m =

m

[2m]2
a−mam N

φ

k =
1

x2k + x−2k
φ−kφk.

We divide the trace onV (230) ' F (0)+ into three parts;

trV (230)(x
2D . . .) = trFa (x

−4d̄a . . .) · tr
F
φNS

+
(x−4dφ

NS

. . .) · trF [2Q](x
1
2∂

2
α−∂α . . .)

+ trFa (x
−4d̄a . . .) · tr

F
φNS

−
(x−4dφ

NS

. . .) · treαF [2Q](x
1
2∂

2
α−∂α . . .).

The fermion parts can be written as

tr
F
φNS

±
(x−4dφ

NS

. . .) = 1
2(trFφNS (x

−4dφ
NS

. . .)± tr
Fφ

NS ((ix)−4dφ
NS

. . .)).
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Now we consider the trace of a product of two vertex operators

trV (230)(x
2D8ε(x

−1ζ )81−ε(ζ )) for ε = 0, 1.

The trace taken over bosonic space is a direct consequence of the following formulae:

trFa
(
y−2d̄a exp

( ∞∑
n=1

Ana−n

)
exp

( ∞∑
n=1

Bnan

))
= exp

( ∞∑
n=1

∞∑
m=1

y2mnAnBn
[2n]2

n

) ∞∏
m=1

1

1− y2m

and(
x6

(
ζ1

ζ2

)2

; x4, x4

)2

∞
BI,>(ζ2)BI,<(ζ1)

=
(
x4

(
ζ1

ζ2

)2

; x4, x4

)
∞

(
x8

(
ζ1

ζ2

)2

; x4, x4

)
∞
BI,<(ζ1)BI,>(ζ2). (21)

The traces taken over bosonic spaceFa can be written as infinite products.

trFa (y
−2d̄aBI,<(ζ2)BI,<(ζ1)E

−
<(w)BI,>(ζ2)BI,>(ζ1)E

−
>(w))

= (x4y2; x4, x4, y2)2∞(x
8y2; x4, x4, y2)2∞

(x6y2; x4, x4, y2)4∞
· (x

2y2; y2)∞
(y2; y2)∞

×
[
(x4y2(

ζ2

ζ1
)2; x4, x4, y2)∞(x8y2(

ζ2

ζ1
)2; x4, x4, y2)∞

(x6y2(
ζ2

ζ1
)2; x4, x4, y2)2∞

×
(−x9y2 ζ

2
2
w
; x4, y2)∞(−xy2 w

ζ 2
2
; x4, y2)∞

(−x7y2 ζ
2
2
w
; x4, y2)∞(−x−1y2 w

ζ 2
2
; x4, y2)∞

× (ζ2↔ ζ1)

 . (22)

The traces taken over lattice space have the following theta function formulae:

trF [2Q](x
1
2∂

2
α−∂αf ∂α ) =

∑
l∈Z

x8l2−4lf 4l = 2x16(−x4f 4) (23)

treαF [2Q](x
1
2∂

2
α−∂αf ∂α ) =

∑
l∈Z

x8l2+4lf 4l+2 = f 22x16(−x12f 4). (24)

Here we use the standard notation of the theta function, defined as

2p(z) = (p;p)∞(z;p)∞(pz−1;p)∞.
Now we concentrate on the trace taken over the fermionic space:

tr
F
φNS

±
(x−4d̄φ�NSR (ζ/x)�RNS(ζ )φ

NS(w))

= tr
F
φNS

±

(
x−4d̄φ8

NS,±
R

(
− i

x
1
2 ζ

)
8R
NS,∓

(
− i

x
3
2 ζ

)
φNS(w)

)
(25)

where the symbols8R
NS,±(ζ ) and8NS,±

R (ζ ) are type-I vertex operators of the two-dimensional
Ising model. From relations (17) and (19), we deform the vertex operators in (25) to the fermion
currents. Only the fermion currents and the degree operator appear in the trace:

± i

2
gNS

{
tr
Fφ

NS

(
x−4d̄φψNS

1

(
− i

x
3
2 ζ

)
φNS(w)

)
± tr

Fφ
NS

(
(ix)−4d̄φψNS

1

(
− i

x
3
2 ζ

)
φNS(w)

)}
. (26)
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Here we use

ψNS
1 (ζ ) =

∮
dz

2π iz
f NS0 (z)φNS(z/ζ 2) f NS0 (z) = 2

√
x(x4; x4)∞(−x4; x4)2∞cn(v).

To take the trace of (26) we invoke the following simple relation:

tr
Fφ

NS (ξ−2d̄φ φNS(w1)φ
NS(w2))

tr
Fφ

NS (ξ−2d̄φ )
=

∑
m∈Z+ 1

2

x2m + x−2m

1 + ξ2m

(
w2

w1

)m
.

We calculate the trace taken over fermionic space and calculate the integrals in (26), using the
Fourier expansion of coefficient functionf NS0 (z) given by

f NS0 (z) = 1√
x(x4; x4)∞(−x4; x4)2∞

∑
r∈Z+ 1

2

1

x2r + x−2r
zr .

We have the following infinite sum formulae:

± i

2
gNS

1√
x(x4; x4)∞(−x4; x4)2∞

{
tr
Fφ

NS (x−4d̄φ )
∑
m∈Z+ 1

2

1

x2m + x−2m

(
− w

x5ζ 2

)m

∓ tr
Fφ

NS ((ix)−4d̄φ )
∑
m∈Z+ 1

2

1

x2m − x−2m

(
− w

x5ζ 2

)m}
.

Using the following theta function’s identities:∑
m∈Z+ 1

2

1

x2m ± x−2m
zm = ±x√z (x

4; x4)2∞
(∓x2; x4)2∞

2x4(∓x4z)

2x4(x2z)

we get the infinite product formula of the trace taken over fermionic space

tr
F
φNS

±
(x−4d̄φ�NSR (ζ/x)�RNS(ζ )φ

NS(w))

= ∓ 1

2

w
1
2

ζx2

(x4; x4)2∞
(−x4; x4)2∞

(x8; x4, x8)2∞
(x6; x4, x4)∞

1

2x4

(
− w
x3ζ 2

)
×
(−x2; x4)∞

2x4

(
w
xζ 2

)
2x4(−x2)

± (x2; x4)∞
2x4(− w

xζ 2 )

2x4(x2)

 . (27)

Here we use the character formula of fermion Fock space;

tr
Fφ

NS (x−4d̄φ ) = (−x2; x4)∞.

Combining relations (21)–(24) and (27), we get an integral formula of the spontaneous
staggered polarizations. We can summarize the conclusion obtained as follows.

The trace of a product of two vertex operators has following integral formulae:

trV (230)(x
2D8

230 ∗
30+31,ε

(ζ )8
30+31
230,ε

(ζ ))

= 1

2x3ζ 2

(x8; x4, x8)2∞(x
10; x4, x4)∞

(x8; x4, x4)2∞

(x6; x4)2∞(x
4; x4)2∞

(−x4; x4)2∞

×
∮

C1+ε

dw

2π iw
{(1 +x2)w + 2x5−2εζ 2} 1

2x4(− w
xζ 2 )2x4(− w

x3ζ 2 )

×
[{

2x4( w
xζ 2 )

2x4(−x2)
(−x2; x4)∞ +

2x4(− w
xζ 2 )

2x4(x2)
(x2; x4)∞

}
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Figure 9. Contors.

×2x16

(
−x6

(
w

ζ 2

)2
)

−
{
2x4( w

xζ 2 )

2x4(−x2)
(−x2; x4)∞ −

2x4(− w
xζ 2 )

2x4(x2)
(x2; x4)∞

}
× x3 ζ

2

w
2x16

(
− 1

x2

(
w

ζ 2

)2)]
. (28)

Here the contours encirclew = 0 in such a way that

C1 : −x5ζ 2 is inside and− x3ζ 2 is outside

C2 : −x3ζ 2 is inside and− xζ 2 is outside

as in figure 9.

3.4. Infinite product formula

The purpose of this section is to calculate the integral in (28) and derive an infinite product
formula of spontaneous staggered polarization as in the main result.

Let us use the following abbreviations:

p1(x) = (x16; x16)∞
(x4; x4)3∞

(−x4; x8)∞

p2(x) = (x16; x16)∞
(x2; x2)2∞(x4; x4)∞

(−x4; x4)2∞(−x8; x16)2∞

p3(x) = (x16; x16)∞
(x2; x2)2∞(x4; x4)∞

(−x4; x4)2∞(−x16; x16)2∞

p4(x) = (x16; x16)∞
(x2; x2)2∞(x4; x4)∞

(−x2; x4)2∞(−x4; x8)∞.

Now we consider the following integral:∮
dw

2π iw
w
2x4( w

xζ 2 )2x16(−x6( w
ζ 2 )

2)

2x4(− w
xζ 2 )2x4(− w

x3ζ 2 )
.

The integrand functionI (z) = z 2x4(z)2x16(−x8z2)

2
x4(−z)2x4(−z/x2)

(z = w/xζ 2) is an elliptic function and has
odd invariance;

I (x8z) = I (z) I (z) = −I (z−1).
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Therefore, taking the residue of Cauchy’s principal value atz = −1, we have∮
|z|=1−0

dz

2π iz
I (z) = −1

2
Resz=−1I (z).

Taking the residues nearw = −xζ 2, we get the following formulae:∮
C

dw

2π iw
w
2x4( w

xζ 2 )2x16(−x6( w
ζ 2 )

2)

2x4(− w
xζ 2 )2x4(− w

x3ζ 2 )
= x3ζ 2 ×

{
p2(x)− p4(x) C = C1

p2(x) C = C2.
(29)

Using the same arguments as above, we get∮
C

dw

2π iw

2x4( w
xζ 2 )2x16(− 1

x2 (
w
ζ 2 )

2)

2x4(− w
xζ 2 )2x4(− w

x3ζ 2 )
=
{−2x2p3(x) + p4(x) C = C1

−2x2p3(x) C = C2.
(30)

We consider the following integral:∮
dw

2π iw
w
2x16(−x6( w

ζ 2 )
2)

2x4(− w
x3ζ 2 )

.

The integrand functionJ (z) = 1
z

2
x16(−z2)

2
x4(−x2z)

(z = wx3/ζ 2) is an elliptic function and is composed

of a product of two odd invariant functionsJ1(z) = 2
x16(−z2)

2
x16(z2)

andJ2(z) = 1
z

2
x16(z

2)

2
x4(−x2z)

:

J (x8z) = J (z) J (z) = J1(z)J2(z)

Jk(x
8z) = −Jk(z) Jk(z) = −Jk(z−1) for k = 1, 2.

From the odd invariance property, the constant term of Fourier expansion for variableu such
thatz = eiu becomes zero. Therefore, we have∮

|z|=1

dz

2π iz
J1(z)J2(z) = 0.

Taking the residue nearw = −x3/ζ 2, we get the following formulae:∮
C

dw

2π iw
w
2x16(−x6( w

ζ 2 )
2)

2x4(− w
x3ζ 2 )

=
{

0 C = C1

x3ζ 2p1(x) C = C2.
(31)

Using the same arguments as above, we get the following formulae:∮
C

dw

2π iw

2x16(− 1
x2 (

w
ζ 2 )

2)

2x4(− w
x3ζ 2 )

=
{
p1(x) C = C1

0 C = C2.
(32)

We consider the following integral:∮
dw

2π iw

2x16(−x6( w
ζ 2 )

2)

2x4(− w
x3ζ 2 )

.

The integrand functionK(z) = 2
x16(−z2)

2
x4(−z/x6)

, (z = x3w/ζ 2) satisfies the quasi-periodicity

K(z) = x8K(x8z).

Therefore, we have∮
|z|=1

dz

2π iz
K(z) = −1

1− x8

{∮
z=−x2

+
∮
z=−x6

}
dz

2π iz
K(z)
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where we take the residues near∞. Now we get the following formulae:

∮
C

dw

2π iw

2x16(−x6( w
ζ 2 )

2)

2x4(− w
x3ζ 2 )

=


1

1 +x4
p1(x) C = C1

− x4

1 +x4
p1(x) C = C2.

(33)

Using the same arguments as above we get the following formulae:

∮
C

dw

2π iw

1

w

2x16(− 1
x2 (

w
ζ 2 )

2)

2x4(− w
x3ζ 2 )

= 1

x3ζ 2


− 1

1 +x4
p1(x) C = C1

x4

1 +x4
p1(x) C = C2

(34)

and∮
C

dw

2π iw

1

w

2x4( w
xζ 2 )2x16(− 1

x2 (
w
ζ 2 )

2)

2x4(− w
xζ 2 )2x4(− w

x3ζ 2 )

= −1

xζ 2(1− x8)

{−2x4p2(x)− 4x2p3(x) + (x2 + x−2)p4(x) C = C1

−2x4p2(x)− 4x2p3(x) + (x2 + x6)p4(x) C = C2

(35)

and∮
C

dw

2π iw

2x4( w
xζ 2 )2x16(−x6( w

ζ 2 )
2)

2x4(− w
xζ 2 )2x4(− w

x3ζ 2 )

= −1

1− x8

{
2x2p2(x) + 4x8p3(x)− (1 +x4)p4(x) C = C1

2x2p2(x) + 4x8p3(x)− (x4 + x8)p4(x) C = C2.
(36)

Inserting relations (29)–(36) into integral formulae (28), we arrive at formulae (6) and (7). We
have now proved the main result.
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